2209=x^2+(x^2+4x+4)

Simple and best practice solution for 2209=x^2+(x^2+4x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2209=x^2+(x^2+4x+4) equation:



2209=x^2+(x^2+4x+4)
We move all terms to the left:
2209-(x^2+(x^2+4x+4))=0
We calculate terms in parentheses: -(x^2+(x^2+4x+4)), so:
x^2+(x^2+4x+4)
We get rid of parentheses
x^2+x^2+4x+4
We add all the numbers together, and all the variables
2x^2+4x+4
Back to the equation:
-(2x^2+4x+4)
We get rid of parentheses
-2x^2-4x-4+2209=0
We add all the numbers together, and all the variables
-2x^2-4x+2205=0
a = -2; b = -4; c = +2205;
Δ = b2-4ac
Δ = -42-4·(-2)·2205
Δ = 17656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{17656}=\sqrt{4*4414}=\sqrt{4}*\sqrt{4414}=2\sqrt{4414}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{4414}}{2*-2}=\frac{4-2\sqrt{4414}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{4414}}{2*-2}=\frac{4+2\sqrt{4414}}{-4} $

See similar equations:

| 5x^2-972=0 | | 9+5x-6=3x+4 | | 5x-29=3x+27 | | 1/2y+2=8 | | 9x^2x+6x=-1 | | C=9(y+6) | | 9x^2x+6=-1 | | -2.5x=8 | | H=-16t2+4t+0 | | 28-6w=w | | 28-6w=2 | | 1.33x=3 | | 4x+3-3=2x-3-3 | | 5y-45=180 | | 14-(2m+7)=4+2m-13 | | 18x-6+16x+8=180 | | -6n-20=-2n+4(1+-3n) | | 5y+45=180 | | 5a2+6=7a | | 1^2+3^2=c^2 | | 95-w=211 | | 11/3x=3 | | 3x-14-5x+2=27-2x-3-3x | | 1/2y+2=0 | | 2x+1=9x=4 | | |x-9|=19 | | 2(x+3.00)=34.00 | | 8x+1+9x+10=180 | | 2(x+$3.00)=$34.00 | | 6b^2+7b+1=0 | | (8x+30)+11x=90 | | 15-11z=4z |

Equations solver categories